The Birth Satisfaction Scale-Revised (BSS-R): An International retrospective

Colin R. Martin

Faculty of Health Sciences, Institute for Clinical and Applied Health Research (ICAHR), University of Hull, UK
TEA-TIME TALKS
‘The mental health of pregnant women & new mums’

The University is delighted to be able to celebrate the research and teaching from the Faculty of Health Sciences. We are proud to showcase the fantastic work of our academic staff and postgraduate research students. Open Campus talks are free, accessible and informal. If you are a member of the public, a student, a practitioner or a member of staff, you are very welcome to attend.

WEDS JAN 23 2019
6.30PM TO 8.30PM
TAXIARCHES BUILDING 4

‘MATERNAL WELLBEING’
Dr Francesca Wadephul, Postdoctoral Research Assistant; Dr Lesley Glover, Senior Lecturer; and Nicola Biselli, Alexander Technique Teacher and PhD Candidate, Faculty of Health Sciences.

WEDS FEB 27 2019
6.30PM TO 8.30PM
THEATRE 1

‘LOVE, GUILT AND SEPARATION: MENTAL HEALTH IN PREGNANCY, BIRTH AND THE TRANSITION TO MOTHERHOOD’
Professor Julie James, Professor of Midwifery and Dean, and Professor Gail Martin, Professor of Perinatal Mental Health, Faculty of Health Sciences.

WEDS MAR 27 2019
6.30PM TO 8.30PM
THEATRE 1

‘BONDING WITH THE UNBORN BABY’
Dr Francesca Wadephul, Postdoctoral Research Assistant, Faculty of Health Sciences.

WEDS APR 10 2019
6.30PM TO 8.30PM
THEATRE 1

‘FEAR OF CHILDBIRTH: CONSIDERING THE CONTINUUM OF EXPECTANT MOTHERS’ FEAR’
Caroline James, Senior Research Fellow, Faculty of Health Sciences and Claire Marshall, Specialist Perinatal Mental Health Nurse and Clinical Lead.

WEDS MAY 15 2019
6.30PM TO 8.30PM
THEATRE 1

‘FEAR OF CHILDBIRTH: OPEN PANEL PUBLIC FORUM’
Professor Julie James, Professor of Midwifery, Dean of the Faculty of Health Sciences, and Carline James, Senior Research Fellow, Faculty of Health Sciences.

WEDS JUNE 12 2019
6.30PM TO 8.30PM
THEATRE 1

‘WHAT HAPPENED TO TRUST? – HOW PREGNANT WOMEN TRUST AND MISTRUST HEALTHCARE PROFESSIONALS AFTER A PREVIOUS TRAUMATIC BIRTH’
Dr Ailin Chinnock, Consultant Obstetrician, Neonatologist, Examiner, Daisy & Birth Activist.

BOOKING:
A free transfer is available for those who would like to attend. To book your place, please visit the Open Campus online store. Bookings are limited and places are available on a first-come, first-served basis. For further information on the event or how to book:

Twitter: @open_campus
Facebook: https://www.facebook.com/universityofhull.OpenCampus/
Development of new measures

- Perceptions of Care Adjective Checklist-Revised (PCACL-R)
- Oxford Worries about Labour Scale (OWLS)
- Perinatal Mental Health Awareness (PMHA) scale
- Perinatal Illness Perceptions Scale (PIPS)
- Professional Issues in Maternal Mental Health Scale (PIMMHS)
- Enhancing Decision-making and Assessment in Midwifery (EDAM)
- Self-Image as Mother Scale (SIMS)
- Schizophrenia Quality of Life Scale-Revision 4 (SQLS-R4)
- Birth Satisfaction Scale-Revised (BSS-R)
Understanding and Promoting Birth Satisfaction in New Mothers

Katherina Hinlo, PhD, RNC, APN

Abstract

Purpose: The purpose of this study was to examine the impact of selected maternal psychosocial and educational factors on birth satisfaction of new mothers during early postpartum.

Study Design and Methods: This is a descriptive correlational study exploring the relationship among birth satisfaction, breastfeeding self-efficacy, and perceived stress in 107 new mothers. The first 3 days postpartum, instruments were used to assess birth satisfaction, breastfeeding self-efficacy, and perceived stress, and a researcher-generated demographic form. Quantitative analysis included descriptive statistics, correlation, one-way ANOVA, and multiple regression analyses.

Results: Birth satisfaction was negatively correlated with perceived stress (r = -0.20, p < 0.05) and positively correlated with early breastfeeding (r = 0.29, p < 0.05) and breastfeeding self-efficacy (r = 0.26, p < 0.05). The predictive model for birth satisfaction was significant (F(3, 103) = 4.25, p = 0.001), explaining approximately 25% of variance in birth satisfaction in the sample.

Clinical Implications: Three months and management, enhancement of maternal expectations for labor and birth, and promotion of interventions with newborns immediately after birth as nursing priorities to promote birth satisfaction. Key words (HEALT): Birth, Mother, Nursing, Patient satisfaction, Psychological stress.
Birth Satisfaction Scale-Revised (BSS-R; Hollins Martin and Martin, 2014)

- 10-item self-report measure of birth experience

- Up to 5 year valid and reliable recall (Alfaro Blazquez et al., 2017; Martin et al., 2017)
Scoring the BSS-R

Three-factor correlated

- Stress
 - BSS-R 1
 - BSS-R 2
 - BSS-R 7
 - BSS-R 9
 - BSS-R 4
 - BSS-R 8
 - BSS-R 3
 - BSS-R 5
 - BSS-R 6
 - BSS-R 10

- Women’s attributes

- Quality of care

Bi-factor

- Stress
 - BSS-R 1
 - BSS-R 2
 - BSS-R 7
 - BSS-R 9
 - BSS-R 4
 - BSS-R 8
 - BSS-R 3
 - BSS-R 5
 - BSS-R 6
 - BSS-R 10

- Women’s attributes

- Quality of care

General

Lateral Episiotomy or Not in Vacuum Assisted Delivery in Non-parous Women

Fatemeh Rahimi-Kia1, Shirin Shahbazi1, Shabir Mohammadi1, Shima Haghani1

1 Department of Reproductive Health Midwifery, Nursing and Midwifery Care Research Center, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Reproductive Health Midwifery, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
3 Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran

ARTICLE INFO
ABSTRACT

Background & Aim: Labor pain is an unpleasant experience for most women and can affect their birth satisfaction. This study investigated the effects of ice pack application on pain intensity in the active phase of labor and on birth satisfaction among primiparous women.

Methods & Materials: This randomized controlled trial was conducted on 161 primiparous women. Participants were randomly allocated to either an intervention or a control group. In the intervention group, women were instructed to apply ice pack for 30 minutes and then 30 minutes later until the end of the first stage of labor.

Results: The results showed a significant decrease in intensity of pain in the intervention group compared to the control group. The median pain intensity in the intervention group was 30% lower than in the control group.

Conclusion: The use of ice packs during labor can significantly reduce pain intensity in primiparous women, which may improve their birth satisfaction.

Keywords:
Labor pain; Ice packs; Pain intensity; Birth satisfaction; Primiparous women

Lateral Episiotomy or Not in Vacuum Assisted Delivery in Non-parous Women

Sponsor:
Karolinska Institutet

Collaborator:
The Swedish Research Council
Details

1. Tracked via the PROMIS-10
2. Evaluated with the PHQ-2, optional follow-up with the EPDS
3. Option to track via the BSES-SF
4. Tracked via the ICIQ-SF and Wexner, Wexner and the PROMIS SFFACs
5. Tracked via the MIBs
6. Tracked via the BSS-R
ICHOM Pregnancy and Childbirth

Standardized outcome measures for pregnancy and childbirth, an ICHOM proposal

Malini Anand Nijagal1, Stephanie Wilsaig2, Caleb Stowell9, Elizabeth Olson2,3, Isis Amer-Wahlin3, Gouke Bosset4, Alyson Brooks5, Matthew Coleman6, Shamala Devi Karadasingham7, James M N Duffy8, Tracy Harragan8, Stefan Gebhard8, Meredith E Greene8, Floris Groenendaal1,1, J Ravichandran P Jeganathan1,1, Tessa Kowal9,15, Matja Laman-de-Ruijter1,1, Elliott Main8, Michelle Owens8, Rod Petersen8, Irwin Reiss9, Carol Salata19, Anna Maria Speciale8, Rachel Thompson1, Oluwakemi Okunola2, Arië Franco1,2,22

Abstract

Background: Value-based health care aims to optimize the balance of patient outcomes and health care costs. To improve value in perinatal care using this strategy, standard outcomes must first be defined. The objective of this work was to define a minimum, internationally appropriate set of outcome measures for evaluating and improving perinatal care with a focus on outcomes that matter to women and their families.

Methods: An interdisciplinary and international Working Group was assembled. Existing literature and current measurement initiatives were reviewed. Serial guided discussions and validation surveys provided consumer input. A series of nine teleconferences, incorporating a modified Delphi process, were held to reach consensus on the proposed Standard Set.

Results: The Working Group selected 24 outcome measures to evaluate care during pregnancy and up to 6 months postpartum. These include clinical outcomes such as maternal and neonatal mortality and morbidity, stillbirth, preterm birth, birth injury and patient-reported outcome measures (PROMs) that assess health-related quality of life (HRQOL), mental health, mother-infant bonding, confidence and success with breastfeeding, incontinence, and satisfaction with care and birth experience. To support analysis of these outcome measures, pertinent baseline characteristics and risk factor metrics were also defined.

Conclusions: We propose a set of outcome measures for evaluating the care that women and infants receive during pregnancy and the postpartum period. While validation and refinement via pilot implementation projects are needed, we view this as an important initial step towards value-based improvements in care.

Keywords: Health outcomes; Pregnancy; Obstetrics; Consensus; Delivery outcomes; Outcome measures; Perinatal health; DELPHI process; Patient-centred outcomes; Patient-reported
Aim and objectives of BSS-R meta-analysis

• Evaluate the impact of delivery type on BSS-R scores across a range of International studies that have incorporated the measure into the study design

• Determine if a consistent effect of delivery type was observed across BSS-R sub-scale and total scores
Ceasarean section
Ceasarean section

- Coeliac disease (Decker et al. 2010)
- Diabetes (Algert et al. 2009)
- Obesity (Ajslev et al. 2011)
- Asthma (Roduit et al. 2009)
PROBIOTICS IN MENTAL HEALTH

EDITORS:
COLIN R. MARTIN AND DEREK LARKIN
Method

• Meta-analysis on published/in progress studies using the BSS-R where delivery type could be unambiguously dichotomised into either (i.) unassisted vaginal delivery (UVD) or (ii.) intervention delivery

• The raw mean method was used to examine the pooled effect across studies for the BSS-R
Results

• Twelve studies were identified and suitable for meta-analysis
• BSS-R studies from Australia (N=3), Croatia, Greece, Israel, Italy, Slovenia, Spain, the UK and the USA (N=2) were included (total N=5096)
• Statistically significant pooled mean differences were observed between groups on all BSS-R sub-scales and the BSS-R total score
• Unassisted vaginal delivery was associated with significantly higher (better) BSS-R scores
BSS-R total score

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Unassisted Mean</th>
<th>Unassisted SD</th>
<th>Total</th>
<th>Intervention Mean</th>
<th>Intervention SD</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference IV. Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collado et al. (under review)</td>
<td>27.44</td>
<td>4.95</td>
<td>247</td>
<td>26.46</td>
<td>4.79</td>
<td>50</td>
<td>9.5%</td>
<td>2.84 [1.38, 4.30]</td>
</tr>
<tr>
<td>Hinic (2017)</td>
<td>27.7</td>
<td>4.42</td>
<td>57</td>
<td>25.50</td>
<td>3.84</td>
<td>50</td>
<td>9.1%</td>
<td>2.11 [0.54, 3.68]</td>
</tr>
<tr>
<td>Hollins Martin and Martin (2014)</td>
<td>29.19</td>
<td>5.66</td>
<td>142</td>
<td>28.51</td>
<td>5.13</td>
<td>51</td>
<td>9.4%</td>
<td>2.56 [1.20, 4.13]</td>
</tr>
<tr>
<td>Jefford et al. (2019)</td>
<td>31.0</td>
<td>5.48</td>
<td>129</td>
<td>27.8</td>
<td>5.75</td>
<td>59</td>
<td>8.0%</td>
<td>4.00 [2.35, 5.65]</td>
</tr>
<tr>
<td>Lee et al. (2018)</td>
<td>24.53</td>
<td>8.1</td>
<td>53</td>
<td>24.96</td>
<td>6.77</td>
<td>40</td>
<td>3.6%</td>
<td>0.53 [3.11, 4.17]</td>
</tr>
<tr>
<td>Martin et al. (2017)</td>
<td>32.85</td>
<td>5.77</td>
<td>1902</td>
<td>27.45</td>
<td>9.45</td>
<td>211</td>
<td>10.1%</td>
<td>5.50 [4.20, 6.80]</td>
</tr>
<tr>
<td>Martin et al. (In prep.)</td>
<td>32.09</td>
<td>5.61</td>
<td>420</td>
<td>27.06</td>
<td>6.04</td>
<td>132</td>
<td>11.2%</td>
<td>5.03 [4.02, 6.04]</td>
</tr>
<tr>
<td>Menhart and Prosen (2017)</td>
<td>27.91</td>
<td>7.91</td>
<td>129</td>
<td>23.46</td>
<td>8.73</td>
<td>119</td>
<td>7.3%</td>
<td>4.45 [2.37, 6.53]</td>
</tr>
<tr>
<td>Nalic Rados et al. (In prep.)</td>
<td>23.64</td>
<td>8.67</td>
<td>421</td>
<td>21.1</td>
<td>8.25</td>
<td>131</td>
<td>8.8%</td>
<td>2.44 [0.80, 4.08]</td>
</tr>
<tr>
<td>Romero-Gonzalez et al. (2019)</td>
<td>26.86</td>
<td>5.30</td>
<td>133</td>
<td>24.36</td>
<td>5.1</td>
<td>69</td>
<td>8.6%</td>
<td>5.56 [3.97, 7.23]</td>
</tr>
<tr>
<td>Skowpiece et al. (In press)</td>
<td>25.64</td>
<td>6.7</td>
<td>211</td>
<td>19.03</td>
<td>7.13</td>
<td>72</td>
<td>8.0%</td>
<td>5.21 [3.32, 7.10]</td>
</tr>
<tr>
<td>Varadevski et al. (2015)</td>
<td>28.19</td>
<td>5.9</td>
<td>140</td>
<td>22.77</td>
<td>6.34</td>
<td>22</td>
<td>5.5%</td>
<td>5.42 [2.50, 8.34]</td>
</tr>
</tbody>
</table>

Total (55% CI)

- **Unassisted Mean:** 3990
- **Intervention Mean:** 1106
- **Total:** 100.0%
- **Mean Difference:** 3.93 [3.09, 4.77]

Heterogeneity: $I^2 = 13.8$, $Chi^2 = 33.13$, df = 11 ($P = 0.003$); $I^2 = 67$

Test for overall effect: $Z = 9.17$ ($P < 0.00001$)
BSS-R Women’s Attributes

Study or Subgroup | Unassisted Mean | Unassisted SD | Unassisted Total | Intervention Mean | Intervention SD | Intervention Total | Mean Difference IV, Random, 95% CI |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colclough et al. (under review)</td>
<td>4.66</td>
<td>2.03</td>
<td>247</td>
<td>4.44</td>
<td>1.92</td>
<td>50</td>
<td>0.22 [0.07, 0.37]</td>
</tr>
<tr>
<td>Hinch (2017)</td>
<td>3.18</td>
<td>1.34</td>
<td>57</td>
<td>3.29</td>
<td>1.37</td>
<td>49</td>
<td>-0.11 [-0.25, 0.03]</td>
</tr>
<tr>
<td>Hollins Martin and Martin (2014)</td>
<td>5.11</td>
<td>2.05</td>
<td>142</td>
<td>4.46</td>
<td>1.82</td>
<td>81</td>
<td>0.65 [0.12, 1.17]</td>
</tr>
<tr>
<td>Jefford et al. (2018)</td>
<td>6.72</td>
<td>1.18</td>
<td>129</td>
<td>4.9</td>
<td>2.02</td>
<td>59</td>
<td>0.32 [0.26, 0.38]</td>
</tr>
<tr>
<td>Lee et al. (2018)</td>
<td>3.63</td>
<td>2.17</td>
<td>59</td>
<td>3.97</td>
<td>2.19</td>
<td>40</td>
<td>0.32 [-1.02, 0.74]</td>
</tr>
<tr>
<td>Martin et al. (2017)</td>
<td>6.24</td>
<td>1.77</td>
<td>1902</td>
<td>4.38</td>
<td>2.63</td>
<td>211</td>
<td>1.26 [0.90, 1.62]</td>
</tr>
<tr>
<td>Martin et al. (in prep.)</td>
<td>5.79</td>
<td>1.81</td>
<td>420</td>
<td>4.5</td>
<td>2.07</td>
<td>132</td>
<td>1.28 [0.95, 1.63]</td>
</tr>
<tr>
<td>Nakic Rados et al. (in prep.)</td>
<td>4.6</td>
<td>2.4</td>
<td>421</td>
<td>2.98</td>
<td>2.49</td>
<td>131</td>
<td>1.71 [1.23, 2.19]</td>
</tr>
<tr>
<td>Romero-Gonzalez et al. (2019)</td>
<td>5.08</td>
<td>2.06</td>
<td>133</td>
<td>4.15</td>
<td>1.78</td>
<td>89</td>
<td>0.93 [0.38, 1.48]</td>
</tr>
<tr>
<td>Skirnsky et al. (in press)</td>
<td>4.47</td>
<td>2.21</td>
<td>211</td>
<td>3.47</td>
<td>2.02</td>
<td>72</td>
<td>1.00 [0.45, 1.55]</td>
</tr>
<tr>
<td>Vardavaki et al. (2015)</td>
<td>5.33</td>
<td>1.67</td>
<td>140</td>
<td>4.45</td>
<td>1.65</td>
<td>22</td>
<td>0.88 [0.15, 1.61]</td>
</tr>
</tbody>
</table>

Total (95% CI): 3861 | 986 | 100.0% | 0.81 [0.48, 1.15] |

Heterogeneity: Tau² = 0.24, Chi² = 45.66, df = 10 (P < 0.00001); I² = 79%
Test for overall effect: Z = 4.78 (P < 0.00001)
BSS-R Stress

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Unassisted Mean</th>
<th>Unassisted SD</th>
<th>Unassisted Total</th>
<th>Intervention Mean</th>
<th>Intervention SD</th>
<th>Intervention Total</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliaro et al. (under review)</td>
<td>8.55</td>
<td>3.08</td>
<td>247</td>
<td>6.9</td>
<td>3</td>
<td>50</td>
<td>9.3% 1.85 [0.75, 2.97]</td>
</tr>
<tr>
<td>Hinc (2017)</td>
<td>10.61</td>
<td>3.48</td>
<td>57</td>
<td>9.46</td>
<td>2.54</td>
<td>49</td>
<td>7.8% 1.16 [0.00, 2.33]</td>
</tr>
<tr>
<td>Hollins Martin and Martin (2014)</td>
<td>10.29</td>
<td>3.19</td>
<td>142</td>
<td>8.3</td>
<td>3.05</td>
<td>81</td>
<td>9.6% 2.36 [1.34, 2.94]</td>
</tr>
<tr>
<td>Joffo et al. (2019)</td>
<td>11.54</td>
<td>3.07</td>
<td>133</td>
<td>9.33</td>
<td>3.48</td>
<td>49</td>
<td>8.6% 2.51 [1.83, 3.59]</td>
</tr>
<tr>
<td>Lee et al. (2018)</td>
<td>7.31</td>
<td>3.38</td>
<td>59</td>
<td>5.56</td>
<td>4.09</td>
<td>40</td>
<td>6.0% 0.73 [-0.80, 2.26]</td>
</tr>
<tr>
<td>Martin et al. (in prep.)</td>
<td>11.7</td>
<td>3.43</td>
<td>420</td>
<td>8.50</td>
<td>3.1</td>
<td>152</td>
<td>11.6% 3.02 [2.47, 3.57]</td>
</tr>
<tr>
<td>Nakic Rados et al. (in prep.)</td>
<td>8.62</td>
<td>4.15</td>
<td>421</td>
<td>7.36</td>
<td>3.07</td>
<td>131</td>
<td>10.2% 1.24 [0.47, 2.01]</td>
</tr>
<tr>
<td>Romero-Gonzalez et al. (2019)</td>
<td>10.6</td>
<td>3.99</td>
<td>133</td>
<td>8.96</td>
<td>3.7</td>
<td>69</td>
<td>8.7% 3.64 [2.05, 4.65]</td>
</tr>
<tr>
<td>Skirinsky et al. (in press)</td>
<td>8.0</td>
<td>3.59</td>
<td>211</td>
<td>5.99</td>
<td>3.24</td>
<td>72</td>
<td>9.5% 2.61 [1.72, 3.50]</td>
</tr>
<tr>
<td>Vardavaki et al. (2015)</td>
<td>10.69</td>
<td>2.94</td>
<td>140</td>
<td>9.18</td>
<td>3.05</td>
<td>22</td>
<td>6.8% 1.51 [0.15, 2.87]</td>
</tr>
</tbody>
</table>

Total (95% CI): 3861 (986) 100.0% 2.18 [1.68, 2.68]

Heterogeneity: Tau² = 0.48; Chi² = 34.81, df = 10 (P = 0.0001); I² = 71%
Test for overall effect: Z = 8.53 (P < 0.00001)
BSS-R Quality

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Unassisted</th>
<th>Intervetion</th>
<th>Mean Difference IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colliago et al. (under review)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hink (2017)</td>
<td>13.51</td>
<td>14.27</td>
<td>0.76 [0.39, 1.13]</td>
</tr>
<tr>
<td>Hollins Martin and Martin (2014)</td>
<td>13.75</td>
<td>14.62</td>
<td>-0.87 [1.54, 0.00]</td>
</tr>
<tr>
<td>Jefford et al. (2016)</td>
<td>13.64</td>
<td>13.92</td>
<td>0.28 [0.08, 0.48]</td>
</tr>
<tr>
<td>Lee et al. (2018)</td>
<td>13.30</td>
<td>13.20</td>
<td>0.10 [0.02, 0.18]</td>
</tr>
<tr>
<td>Martin et al. (2017)</td>
<td>14.53</td>
<td>15.00</td>
<td>-0.47 [0.72, 1.07]</td>
</tr>
<tr>
<td>Martin et al. (in prep.)</td>
<td>14.6</td>
<td>15.00</td>
<td>-0.40 [0.72, 1.03]</td>
</tr>
<tr>
<td>Nakic Rados et al. (in prep.)</td>
<td>10.32</td>
<td>10.20</td>
<td>0.12 [0.00, 0.15]</td>
</tr>
<tr>
<td>Romero-Gonzalez et al. (2019)</td>
<td>14.29</td>
<td>13.86</td>
<td>-0.43 [0.72, 1.09]</td>
</tr>
<tr>
<td>Skinskas et al. (in press)</td>
<td>11.97</td>
<td>12.00</td>
<td>0.03 [0.00, 0.08]</td>
</tr>
<tr>
<td>Vardavaki et al. (2015)</td>
<td>12.16</td>
<td>12.00</td>
<td>0.16 [0.00, 0.32]</td>
</tr>
<tr>
<td>Total</td>
<td>3861</td>
<td>987</td>
<td>0.90 [0.54, 1.26]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau^2 = 0.22; Chi^2 = 29.87, df = 10 (P = 0.0009); I^2 = 67%
Test for overall effect: Z = 4.87 (P < 0.00001)
Women’s attributes: Stress

BSS-R sub-scale scores: Pain control

\(p = 0.02 \)

\(p < 0.001 \)

Women's attributes
Stress
Quality

Thank you

C.R.Martin@hull.ac.uk

Twitter: colin_r_martin